
Bifurcations of Relative Equilibria of an Oblate

Gyrostat with a Discrete Damper ∗

RALPH A. SANDFRY
United States Air Force Academy, Colorado, 80840, USA
(ralph.sandfry@usafa.af.mil)

CHRISTOPHER D. HALL
Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061,
USA (cdhall@vt.edu)

Abstract. We investigate relative equilibria of an oblate gyrostat with a discrete
damper. Linear and nonlinear methods yield stability conditions for simple spins
about the nominal principal axes. We use analytical and numerical methods to
explore other equilibria, including bifurcations that occur for varying rotor mo-
mentum and damper parameters. These bifurcations are complex structures that
are perturbations of the zero rotor momentum case. We use Lyapunov-Schmidt
reduction to determine an analytic relationship between parameters to determine
conditions for which a jump phenomenon occurs.
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1. Introduction

The equilibria and stability of spinning satellites have received consid-
erable attention since the initial experiences of Explorer I [10]. Destabi-
lized by energy dissipation, Explorer I’s loss was followed by consider-
able efforts to sharpen the stability conditions for spinning satellites in
the presence of damping. A gyrostat model, consisting of a rigid body
with an axisymmetric rotor, has often been used to study the dynamics
of satellites with a single rotor [8, 9, 2, 11, 5]. The most commonly
studied equilibrium state is the nominal spin, where the satellite spin-
axis is aligned with the axisymmetric rotor spin-axis. Much work has
been focused on the stability of the nominal spin in the presence of en-
ergy dissipation. However, when the nominal spin is destabilized other
possible stable equilibria exist. These equilibria represent potential trap
states which could capture the free-spinning satellite until a correcting
maneuver is performed. These alternative equilibria may include other
principal-axis spins as well as off-axis spins within principal planes. Of
particular significance is the potential jump from the nominal spin to
another stable equilibria should stability be lost.
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We study the multiple equilibria of an oblate gyrostat with a spring-
mass damper. The equilibria depend on the values of a number of
system parameters, such as spring stiffness, damper location or rotor
momentum. Numerical and analytical methods are used to determine
bifurcation branches and key points in parameter space. The primary
tool is numerical continuation, including two-parameter continuation
to explore the behavior of multiple equilibria in parameter space. We
focus on the branching behavior of the nominal spin and turning points
in a principal plane with emphasis on avoiding jump phenomena.

2. Model and Equations of Motion

The model we study, as shown in Figure 1, comprises a rigid body,
B, containing a rigid axisymmetric rotor, R, and a mass particle P,
which is constrained to move parallel to the unit vector n̂ fixed in B.
We choose a body frame such that the origin O is the system mass
center and the body frame axes b̂i are system principal axes when P
is in its rest position (x∗ = 0). The vector n̂ is parallel to b̂1, which is
the nominal-spin axis for the spacecraft. The particle is connected to
a linear spring and has linear damping. The rotor spin-axis is in the â
direction, parallel to the b̂1 axis. All vectors and tensors are expressed
with respect to the body frame. This configuration is a reasonable
model for a dual-spin spacecraft with a “ball-in-tube” type precession
damper. It also can model any spacecraft with a single momentum
wheel and a similar damper [14]. In a more general sense, the damper
properties may be adjusted to model a flexible appendage attached to
the rigid body.

The equations of motion are developed by Hughes [7] in dimensional
form using a Newton-Euler approach. The system linear and angular
momenta are denoted p and h respectively. The linear momentum of
the damper mass in the n̂ direction is pn and the relative displacement
and velocity of the damper mass in the n̂ direction are x and y. The
position vector from O to P is rp = b+xn where b is a vector from O
to the undeformed position of the damper mass. The angular velocity
of the body frame with respect to the inertial frame is ω. The origin of
the body frame, point O, has velocity vo. The rotor angular momentum
component along the rotor axis of symmetry relative to the platform is
hs = Isωsâ = hsâ. The symbol Is denotes the rotor axial moment of
inertia and ωs is the rotor angular speed relative to the platform. The
rotor is subject to axial torque ga applied by the platform. The absolute
axial rotor angular momentum is ha = IsâT ω+hs = Is(âT ω+ωs). The
mass of the damper particle is md and the total system mass is m. The

bifgyrostat.tex; 6/05/2005; 12:46; p.2



3

â
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Figure 1. Single-rotor axial gyrostat with aligned discrete damper

system inertia matrix is J which depends on x. For x = 0, the moment
of inertia is denoted I = diag(I1, I2, I3). The spring has stiffness k and
the damper has damping coefficient c. The external force and moment
are f and g.

We non-dimensionalize the equations using a characteristic length,
mass, and time. To clarify the notation, a ∗ superscript denotes the
dimensional form of each parameter or variable whereas the ∗ is omitted
once each is non-dimensionalized. The characteristic quantities selected
are: length =

√
trI∗/m∗, mass = m∗, and time = trI∗/h∗. The trace of

the dimensionless inertia matrix is unity, trI = 1, and, in the torque-
free case, the dimensionless angular momentum vector has unit length,
hTh = 1.

The dimensionless equations of motion are:

ṗ = −ω×p + f (1)
ḣ = −ω×h − v×

o p + g (2)
ḣa = ga (3)
ṗn = mdω

T n̂×[vo − (b + xn̂)×ω] − cy − kx (4)
ẋ = y (5)
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The superscript × denotes the skew-symmetric matrix form of a vector
[7]. The system momenta may be expressed in terms of the system
velocities as:

p = vo − mdxn̂×ω + mdyn̂ (6)
h = Jω + mdxn̂×vo + mdyb×n̂ + Isωsâ (7)

ha = Is(âT ω + ωs) (8)
pn = md(n̂Tvo − n̂Tb×ω + y) (9)

and the inertia matrix is

J = I + md

[(
2xbT n̂ + x2

)
1− x(bn̂T + n̂bT ) − x2n̂n̂T

]
(10)

where 1 is the identity matrix.
We reduce the order of the system equations by several simplifying

assumptions consistent with the intention of studying the free motion
of the damped gyrostat. Assuming that the external force is f = 0,
linear momentum is constant, and without loss of generality, we set
p = 0. Assuming the external torque is g = 0, angular momentum is
constant. We also assume that ga = 0 and treat ha as a bifurcation
parameter instead of as a dynamic variable. With these assumptions,
we can write the velocity and angular velocity as:

vo = mdxn̂×ω − mdyn̂ (11)
ω = K−1m (12)

where

K = I − IsââT + md

[
2xbTn̂E − x(bn̂T + n̂bT) − m′

dx
2n̂×n̂×

]

m = h − haâ − mdyb×n̂

mdy =
pn + mdn̂Tb×K−1 (h − haâ)

m′
d + mdn̂Tb×K−1b×n̂

Here we have defined m′
d = 1 − md.

Eliminating the velocities from the equations of motion reduces the
system to five scalar equations in h, pn, and x:

ḣ = h×K−1m (13)

ṗn = −mdmTK−1n̂×
[(

b + m′
dxn̂

)×
K−1m

]
− cy − kx (14)

ẋ = y (15)

These equations are used in the numerical and analytical studies in this
paper.
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2.1. Stability of the Nominal Spin

The most useful relative equilibrium is the steady spin about the b̂1

axis, denoted the nominal spin. Possible spins exist about either the
±b̂1 axes, but with the natural symmetry of the problem only the
+b̂1-axis spin is considered. For this equilibrium, the damper is not
deflected and there is no damper momentum in the n̂ direction, (x
= pn = 0). Previous works have determined the stability conditions
[6, 12]:

I ′1 > −max(I2, I3)λ (16)

k > −(b2m2
dλ

3)/
[
I ′21 (I ′1 + I3λ)

]
(17)

where I ′1 = I1 − Is and λ = ha − 1.
These conditions verify that for ha = 0 and sufficiently large spring

stiffness, steady spins about the major axis are stable. These results
agree with stability conditions derived for rigid bodies with the same
damper mechanism [1]. Non-zero wheel momentum alters the stabil-
ity conditions, but qualitatively the results are similar: for a specific
damper location and wheel momentum there is a critical spring con-
stant below which the equilibrium is unstable. A prolate gyrostat, with
I ′1 < min(I2, I3), requires sufficient gyroscopic stabilization for a stable
nominal spin.

3. Bifurcations of Equilibria

Equilibrium values of h, ha, pn and x are found by setting equa-
tions (13–15) equal to zero and solving the resulting algebraic equa-
tions. Linearizing these equations about the equilibrium point, the
local stability of the equilibrium is found by examining the eigenvalues
of the resulting Jacobian. Multiple equilibrium solutions often exist
for the same values of the system parameters. Changing key system
parameters, such as b, k or ha may produce significantly different equi-
libria. Plotting equilibrium points while varying a system parameter
generates a bifurcation diagram. Critical equilibrium points may exist
where the number of equilibria changes, or bifurcates. Bifurcations are
often classified by the structure of the bifurcation diagram near these
bifurcation points. Many references exist on bifurcation classification
and theory, including Guckenheimer and Holmes [4] and Seydel [15].
To investigate the possible relative equilibria we start from a known
equilibrium point and generate bifurcation diagrams numerically using
the AUTO [3] continuation program. Specifically, we begin with the
ha = 0 case and then examine the more general case.

bifgyrostat.tex; 6/05/2005; 12:46; p.5



6

3.1. Equilibria in the k-b Parameter Plane, ha = 0

In this section we consider the constant rotor momentum case, specifi-
cally ha = 0, and describe the possible equilibria in terms of varying k
and b. Of considerable interest are the bifurcations from the nominal-
spin, including the off-axis branches in the b̂1–b̂3 plane. The system
parameters fixed for this analysis are I = diag [0.40, 0.28, 0.32], Is =
0.04, c = 0.1, and md = 0.1. Unless otherwise noted, we use these same
parameters for all the numerical results.

Starting from the nominal equilibrium state, [h, pn, x] = [1, 0, 0, 0, 0],
we apply numerical continuation using damper location, b, as the bi-
furcation parameter. As shown in Figure 2, the structure of equilibria
branches changes significantly for different values of spring stiffness,
k. For lower k values, the nominal spin bifurcates into a subcritical
pitchfork defined by the stability condition of Equation 17. Additional
stable, off-axis equilibria exist with h in the b̂1–b̂3 plane. A significant
jump from the stable nominal spin to the off-axis equilibrium is possible
should the damper position be perturbed past the bifurcation point. As
k increases, a transcritical bifurcation appears in the off-axis equilibria
for a specific spring stiffness, ktr. Increasing spring stiffness further,
there are two pairs of turning points. The threshold between subcritical
and supercritical pitchforks is a degenerate pitchfork with parameters
bdp and kdp. As k slightly exceeds kdp, the pitchfork is supercritical, and
there is a single pair of turning points. As k increases further, there are
zero turning points.

Using Equation 17 the locus of nominal-spin bifurcation points is
established on the k–b parameter plane. However, other turning points
exist in the b̂1–b̂3 plane which may be characterized in parameter space
with two-parameter continuation. The complete picture is shown in
Figure 3.

The nominal-spin bifurcation line divides the parameter space into
stable and unstable nominal-spin equilibria. Superimposed on this space
is the line of turning points which emanate from the degenerate pitch-
fork point. For fixed values of k, there are possibly 0, 1 or 2 pairs
of turning points in the pitchfork branches for varying b. This k–b
space representation concisely expresses possible equilibria and regions
in parameter space where stable nominal spins exist.

The degenerate pitchfork point is especially important to determine.
This degeneracy marks the transition from subcritical to supercritical
pitchfork bifurcations. With the associated stability changes of the
pitchfork branches, the supercritical bifurcation does not exhibit the
jump phenomenon of the subcritical pitchfork. Lyapunov-Schmidt has
been used to determine analytical conditions for the degenerate pitch-
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(c) k = 0.55, ktc < k < kdp (d) k = 0.625 = kdp
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Figure 2. Bifurcation diagrams, h3 vs. b, for different k, illustrating selected points
in k–b parameter space for ha = 0
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Figure 3. Bifurcations in the k–b parameter plane; ha = 0

fork and the jump threshold [13]. In the general case, for ha �= 0, the
value of b for the degenerate pitchfork is determined by

b2
dp =

4m′
dI

′
1 (I ′1 + I3λ)2

md

[
(3I ′1 + 2I3λ)2 + I ′21 λ

] (18)

Using Equation 17, the critical spring stiffness is

kdp =
−4mdm

′
dλ

3 (I ′1 + I3λ)

I ′1
[
I ′21 λ + (3I ′1 + 2I3λ)2

] (19)

For ha = 0, the expression reduces to

kdp =
m′

dmd

I ′1(2I ′1 − I3)
(20)

This relationship leads to a general design guideline for avoiding the
jump phenomena. For k > kdp, the pitchfork is supercritical and pre-
cludes the jump phenomenon.

3.2. Equilibria in the k-b Parameter Plane, ha �= 0

We expand the scope of bifurcations in the k–b plane and consider
the effects of rotor momentum. The natural extension of the previous
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section is to determine the k–b parameter chart for different ha val-
ues. Equation 17 and two-parameter continuation generate branches
of singular points (pitchfork bifurcation points and turning points) in
k–b parameter space for different values of ha. Not all values of ha

correspond to a bifurcation of the h1 = +1 nominal spin. Equation 17
provides an existence condition for pitchfork bifurcations along the
h1 = +1 axis:

1 − I ′1/I3 < ha < 1 (21)

For oblate (I ′1 > I3) gyrostats, a pitchfork bifurcation is possible for
ha < 0, but only to this limit. Numerical studies verify that degenerate
pitchforks cease to exist near the lower limit of Equation 21. Therefore,
we select a range of ha values and examine how rotor momentum affects
the nominal-spin bifurcation branches and the degenerate pitchfork
transition.

For a range of ha ∈ [−0.05, 0.2], the nominal bifurcation branches
and degenerate pitchfork points are plotted in Figure 4. Recalling that
points in parameter space above each line, toward higher values of
k, represent stable nominal spins, we conclude that increasing rotor
momentum creates a larger region of stable nominal spins. Since greater
rotor momentum should more strongly stabilize the nominal spin of
like sense (positive), this result agrees with intuition. What we also
see in Figure 4 is that for increasing rotor momentum, the degenerate
pitchfork point is affected. For a given damper position, the transition
to a supercritical pitchfork occurs for a softer spring stiffness.
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Figure 4. Nominal-spin bifurcation branches in the k–b parameter plane
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We look more closely at the bifurcation branches, including the
turning points in the b̂1–b̂3 plane, using two-parameter continuation.
We use numerical continuation to produce h3–b bifurcation diagrams
for ha = −0.05 and different values of k, as shown in Figure 5. The
corresponding parameter chart in k–b space is Figure 6.
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Figure 5. Bifurcation diagrams, h3 vs. b, illustrating the evolution of equilibria and
singular points as k decreases for ha = −0.05
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Due to the symmetry of the bifurcation diagrams, we only describe
the equilibria for h3 > 0. Figure 5(a), for k = 0.9, includes a separate,
continuous off-axis branch of equilibria, with a single turning point in
the nearly degenerate pitchfork. For k = 0.76, Figure 5(c) shows that
the separate off-axis branch includes two turning points that mark the
ends of a stable off-axis branch, whereas the pitchfork has a single
turning point. Between Figures 5(a) and 5(c), there is a critical value
of k where a singular point first appears in the separate off-axis branch
as an inflection point, seen in Figure5(b). This critical value is k =
0.791, and the inflection point corresponds to a discontinuity in the k–
b parameter chart (Figure 6). This point is called a cusp, or hysteresis
point. The region of parameter space near the cusp may have 0, 1 or
2 singular points, not including the nominal-spin bifurcation. Figure 5
illustrates the evolution of these turning points for a range of k. The
transcritical bifurcation occurs for k = 0.7524. The range of possible
equilibria is concisely and completely described in k–b parameter space
by Figure 6. The cusp in the k–b parameter space only occurs for ha < 0.
For ha > 0, the k–b parameter chart resembles the ha = 0 case.

3.3. Equilibria in the k–ha Parameter Plane

We focus on the k–ha parameter plane and identify the equilibria in the
b̂1–b̂3 plane. The degenerate pitchfork, occurring in h3–b bifurcation
diagrams, is also found in h3–ha bifurcation diagrams. These degen-
erate points are related to the existence of stable off-axis branches of
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equilibria, and are therefore of practical importance. In the previous
section, the likelihood of the damper position changing, and thereby
destabilizing the equilibrium, seemed unlikely. By comparison, the ro-
tor momentum seems much more vulnerable to perturbation and the
resulting loss of stability.

If the nominal-spin bifurcation point is supercritical, then nominal
spins are stable for ha greater than the bifurcation value. A credible
design point would be to operate on this stable nominal branch, but
if for some reason rotor momentum were lost, the system would be
perturbed to another stable equilibrium condition. This departure can
be a significant jump: using simulation we show that the unstable
nominal spin is attracted to an off-axis equilibrium, with x �= 0, as
shown in Figure 7.
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Figure 7. Simulation of jump phenomena from a nominal spin. For ha slightly lower
than the nominal-spin bifurcation value, the system jumps to a off-axis equilibrium
state.

Figures 8(a) – 8(d) show how the stable off-axis branches of equilib-
ria consist of branches between two turning points, and these branches
ultimately converge as k increases. Note that in these figures we include
both h1 = ±1 branches of nominal-spin equilibria, with the dash-dot
line illustrating a stable and unstable branch co-existing on the h3 = 0
axis. The ha = 1 branch is unstable for lower ha values and becomes
stable at the pitchfork bifurcation point.

We use two-parameter continuation to trace these off-axis turning
points in parameter space and establish the hysteresis point where they
converge. However, we will also show that these two turning points do
not necessarily converge to a hysteresis point, but may converge on the
nominal bifurcation point, creating a degenerate pitchfork.
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Figure 8. Bifurcation diagrams, h3 vs ha, illustrating the evolution of equilibria and
singular points as k increases for b = 0.33

Using the same system parameters as before, we first consider the
k–ha parameter charts of the turning points for b = 0 and b = 0.33
(Figure 9). Both cases generate a cusp in parameter space. This point
defines the point in parameter space where the stable off-axis branch
disappears. For k > kcusp, nominal-spin equilibria are the only possible
stable spins. As with earlier examples of cusps in parameter space,
there can be 0, 1, or 2 pairs of turning points depending on the region
of parameter space.

The absence of stable off-axis branches means if rotor momentum
is lost, an h1 = +1 spin will become an h1 = −1 spin. However, this
jump may also occur for a small, stable off-axis branch. If the stable
off-axis branch only occurs for ha greater than the bifurcation point,
the jump will behave as if there were no stable off-axis branches. To find
this transition in parameter space, we plot the turning point branches
along with the locus of nominal bifurcation points in Figure 10(a). The
key point is where the two branches of singular points cross. For k
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Figure 9. Bifurcation branches in the k–ha parameter plane: b = 0 and b = 0.33

greater than this critical value, stable off-axis branches exist, but only
for ha greater than the nominal bifurcation point. For k less than this
jump transition value, a nominal equilibrium perturbed to a lower rotor
momentum will jump to the corresponding off-axis equilibrium point.
For this example, the two bifurcation branches cross at k = 0.6194,
which is used to generate Figure 10(b).
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(a) k–ha parameter plane; b = 0.33 (b) h3vs.ha for b = 0.33, k = 0.6194

Figure 10. Transition of jump phenomena for stable off-axis equilibria

As b increases further, there is no longer a cusp, but the turning
points ultimately merge with the nominal bifurcation branch, resulting
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in a degenerate pitchfork. These degenerate points are the same in pa-
rameter space as those previously described. The degenerate pitchfork
is identified by Equation 18, and yields a critical value for ±b for a
given value of λ. Due to the symmetry of the problem, the −b case is
not separately discussed. For the k–ha perspective in parameter space,
a given value of b yields two distinct values of ha. For a given value of
b, Equation 18 produces real values of ha when

b2 >
16m′

d(I
′
1 − I3)

md(I ′1 + 24I3)
(22)

For the parameters of the preceding example, the critical value of the
damper location is b = 0.4788. For b below this threshold, a cusp
appears in the parameter chart as the two turning points converge
for increasing k, seen in Figure 9. For b above this threshold there are
two distinct degenerate pitchfork bifurcation points in parameter space
where the turning points converge with the nominal bifurcation branch.
Figure 11 shows the bifurcation branches for both turning points of the
stable off-axis branch. Instead of converging, they move toward and
combine with the branch of nominal bifurcation points. The k values
of the two degenerate points are denoted kdg1 and kdg2.
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Figure 11. Bifurcations in the k–ha parameter plane: b = 0.5

Figures 12– 13 show the bifurcation diagrams including the pitch-
forks before and after the degenerate points. The first (lower) turning
point converges with the nominal bifurcation point first. For kdg1 < k <
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kdg2, the pitchfork branches are stable, precluding any jump phenom-
ena. The second turning point becomes degenerate for a higher value
of spring stiffness, k = kdg2. Increasing k further results in entirely
unstable off-axis equilibria, and therefore the nominal spin is the only
stable equilibrium.
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(a) k = 0.8 (b) k = 0.9

Figure 12. Bifurcation diagrams, h3 vs. ha, near the first degenerate pitchfork for
b = 0.5. As k increases from 0.8 → 0.9, the turning points on off-axis branches
converge with the nominal-spin bifurcation point, forming degenerate pitchforks.
Another set of limit points remains in the off-axis branches of equilibria.
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Figure 13. Bifurcation diagrams, h3 vs. ha, near the second degenerate pitchfork
for b = 0.5. As k increases from 1.8 → 1.9, the final set of turning points on
the off-axis branches converge with the nominal-spin bifurcation point, forming
degenerate pitchforks.
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4. Summary

We used two-parameter continuation and Lyapunov-Schmidt reduc-
tion to characterize bifurcations in k-b-ha parameter space. Using two-
parameter continuation and the stability criterion for the nominal spin,
we produce parameter charts that describe a set of possible singular
points in parameter space. We identify subcritical, degenerate, and
supercritical pitchfork bifurcations of the nominal-spin equilibrium. We
also determine branches of turning points in the b̂1–b̂3 plane and their
relationship with the nominal-spin equilibria. Special cases are identi-
fied, including a transcritical bifurcation and cusps in parameter space.
Lyapunov-Schmidt reduction generates an analytical relationship be-
tween k, b, and ha that identifies a degenerate pitchfork bifurcation of
the nominal spin equilibrium. The degenerate pitchforks are seen in sev-
eral perspectives, including the h3–b and h3–ha bifurcation diagrams.
For larger values of b, two degenerate pitchfork points may occur in
the k–ha parameter space. The degenerate point marks the transition
between subcritical and supercritical pitchforks, and provides a design
criterion to avoid jump phenomena.
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